
Spectrally Tunable Solid-State 
Light Source 
 
Richard M. Vogel, Eastman Kodak Company, Rochester, NY/USA 

 
Abstract 

A low-cost, spectrally tunable, solid-state light source has 
been developed for testing and calibration of digital still camera 
(DSC) products in the design and production environments. The 
light source utilizes LEDs with a plurality of unique emission 
spectra to synthesize visible range spectra with independent 
control of both spectral shape and output level. This technology 
obviates the need for physical color targets and their requisite 
lighting, thereby enabling low-cost, accurate colorimetric 
calibration of each DSC in the production environment. This paper 
summarizes the colorimetric performance of this light source 
relative to other commonly used light sources and to published 
CIE metrics. 

Introduction 
In recent years, competitive pressures in the DSC marketplace 

have forced manufacturers to rethink many aspects of their 
business, including expenditures for capital equipment used in the 
production process. Eastman Kodak Company responded to this 
internal need by initiating a program to develop standardized 
production test equipment that could be leveraged across multiple 
DSC programs and many years of use. In the past, such equipment 
was developed for a specific program and then discarded upon 
program completion. The new approach would allow reuse of 
major capital assets through a combination of interchangeable 
mechanical “nests” and reconfigurable software and firmware. 

One of the nagging problems also facing the DSC production 
community was the lack of availability of a suitable light source to 
meet the needs for camera calibration and image quality testing 
while eliminating the undesirable attributes of warm-up time, 
frequent bulb replacement, daily calibration and monitoring, poor 
spectral quality, and lack of repeatability from one light source to 
the next. A solid-state light source concept, using LEDs, was 
proposed and developed to satisfy this need. The newly developed 
light source also fit well within the reconfigurable capital 
equipment strategy by providing independent programmability of 
spectral shape and output level as well as multiple operating modes 
to support different types of imagers. Construction and operational 
details of this light source are disclosed in U.S. patent 6,759,814. 
The latest models of this light source in use at Kodak feature only 
12 unique LED channels having the emission spectra summarized 
in Fig. 1. 

Desired visible band spectra are synthesized by suitable 
combinations of the available LED spectra. The spectral mixing 
process can be described in its most basic form by Eqs. (1) and (2). 
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Figure 1. Summary of LED spectra used in the spectrally tunable, solid-state light 
source. 

 
LED is a 12 × 351 array containing the spectral radiance data 

for the 12 LEDs. This data covers the range from 400 to 750 nm in 
1 nm increments and is measured at the interior sphere wall. SPD 
is a 1 × 351 vector containing the spectral power distribution data 
for the source that is to be synthesized. The result from Eq. (1) is a 
1 × 12 vector a containing the relative contributions of each LED 
channel required to accurately synthesize the desired SPD. The 
synthesized output src is obtained by multiplying these coefficients 
times the original LED spectra according to Eq. (2). In practice, the 
coefficients are used to modulate the relative on-times of the LED 
channels. Figure 2 shows a comparison of an actual D55 illuminant 
SPD and the synthesized output according to Eqs. (1) and (2). 
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Figure 2. Actual (solid) and synthesized (dotted) D55. 

 
Others have demonstrated that it is possible to obtain a much 

better spectral match by including LEDs with many more unique 
wavelengths [1,2]. However, because of schedule and development 
cost constraints, the current project was executed using LEDs of 
known character that had previously been selected by another 
product program. 

Colorimetric Performance 
Early in the investigative phase of the solid-state light source 

development, it was not apparent that this technology would be 
suitable for colorimetric work, as evidenced by the poor spectral 



match between the synthesized and desired SPDs (see Fig. 2). 
Evaluations were performed using simulated solid-state light 
source data to assess the expected performance against the 
following metrics: 
 

• Correlated color temperature (CCT) 

• Visible range metamerism index (MIvis) 

• Color-rendering index (CRI) 

• CIELAB ∆E* 

 
Simulations were also performed to determine the expected 

performance of the solid-state light source when used in 
conjunction with an actual digital still camera for the purpose of 
colorimetric calibration. Several different types of light source 
were already in use in DSC production environments within the 
company, therefore, it was determined to also include them in the 
evaluation. Three sources suitable for illuminating a reflective 
chart were chosen, as summarized below. 
 

• ARRI Compact 200 HMI 

• Solax daylight simulator (filtered Xenon) 

• Kinoflo 152-K55-S (fluorescent lamp) 

 
Each of the selected sources had a nominal correlated-color 

temperature aim of 5500 K. The following sections briefly describe 
each of the performance metrics used and the results for each light 
source considered. 

Correlated Color Temperature (CCT) 
The fourth edition of the CIE International Lighting 

Vocabulary defines the correlated color temperature as follows: 
“Temperature of the Planckian radiator whose perceived colour 
most closely resembles that of a given stimulus seen at the same 
brightness and under specified viewing conditions. The 
recommended method of calculating the correlated colour 
temperature of a stimulus is to determine on the u,v (not the u’,v’) 
chromaticity diagram the temperature of the point on the locus of 
Planckian radiators that is nearest to the point representing the 
stimulus” [3]. 

The correlated color temperature was computed for each of 
the light sources under consideration using the method outlined by 
Wyszecki and Styles [4]. The results are summarized in Table 1 
and shown graphically in Fig. 3. The LED-based source was 
within 150 K of the D55 aim, while the Solax and ARRI sources 
were both approximately 500 K away from the aim in opposite 
directions. The Kinoflo lamp was almost 1,300 K higher than its 
published color temperature, leading us to question whether it was 
being operated correctly. Unfortunately, there was no opportunity 
to have the spectral data measured again. Figure 3 illustrates that 
the chromaticities of the solid-state source fall essentially on the D-
illuminant locus, whereas the chromaticities of the other sources 
are somewhat distant from the locus. 
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Figure 3. Location of the evaluated light sources relative to the D-illuminant locus. 

 
Color-Rendering Index (CRI) 

CIE Technical Report 13.3 (1995) provides a method of 
assessing the color rending properties of a particular light source 
relative to a D-illuminant having the same color temperature [5]. 
Assessment is based on a set of eight Munsell colors to arrive at an 
average color-rendering index that ranges in value from 0 to 100. 
Sources with a color-rending index of 100 are considered to be 
equivalent to a D-illuminant of the same color temperature. The 
CRI for each source was computed and summarized in Table 1, 
where each source is ranked in order of descending CRI value. 

Visible Range Metamerism Index (MIvis) 
CIE Publication 51, TC-1.3 (1981), provides a method for 

assessing the suitability of a particular light source as a simulator 
of D-illuminants D55, D65, or D75 [6]. Two metamerism indices are 
defined—one for the visible range (MIvis) and one for the 
ultraviolet range (MIuv)—and the assessment is based on different 
sets of metameric samples for each index. For the current 
evaluation, only the visible metamerism index is considered for 
comparison with illuminant D55. Five performance categories, 
ranging from A to E, are defined based on the CIELAB ∆E* value 
computed for the metamerism index. The visible range 
metamerism index, and corresponding source category, were 
computed for each source, and the results are summarized in Table 
1. 

 
Table 1.  Light Source Performance Metrics 

 

Source CCT 
(K) CRI 

MIvis 
(∆E*) 

Category 

D55 5502 100 0.00 A 

LED 5640 98 0.41 B 

HMI 4974 96 0.76 C 

Solax 5947 94 0.36 B 

Kinoflo 6792 91 0.79 C 



 Both the solid-state and Solax sources received MIvis values 
below 0.5 ∆E* units, placing them into category B. Even though 
the HMI source had a visible range metamerism index that was 
double that of the Solax source, it will be shown later that it 
actually performed better for calibrating a DSC. 

 
Illuminant/Color Patch Spectral Synthesis 

An area of particular interest is the ability of the solid-state 
light source to accurately synthesize a set of spectra as might be 
represented by the SPD of a particular source or illuminant 
concatenated with the spectral reflectance characteristics (SRD) of 
a color chart comprising a plurality of color patches. For this 
exercise, a Macbeth Color Checker (MCC) was chosen because its 
characteristics are already familiar to the worldwide image science 
community. 

An aim data set was created by first calculating the CIE XYZ 
tristimulus values for each patch of the MCC under a 5500 K D-
illuminant. The D-illuminant SPD was calculated at 5 nm 
increments over the range from 400 to 700 nm. The XYZ values 
were then transformed to CIELAB L*, a*, and b* values. 
Reproduction data sets for the ARRI, Solax, and Kinoflo sources 
were created using the same procedure. The average and maximum 
CIELAB ∆E* values were computed from the aim and 
reproduction data sets, and the results are summarized in Table 2. 

A reproduction data set was created for the solid-state light 
source by first concatenating the actual D55 SPD with the MCC 
reflectance spectra followed by synthesis of the combined spectra 
using Eqs. (1) and (2). XYZ values were then computed from the 
synthesized D55/MCC spectra with normalization performed 
relative to the synthesized D55 SPD (Fig. 2). The average and 
maximum CIELAB ∆E* values were computed from the aim and 
reproduction data sets, and the results are summarized in Table 2. 

Table 2. Color Performance of Light Sources 

 
Source ∆E*ave ∆E*max 

LED 0.61 2.34 

Solax 1.51 3.62 

HMI 1.94 5.77 

Kinoflo 2.12 5.90 

 
Again, the solid-state light source fared better than did the 

other three sources in reproducing the colorimetry of the color 
chart when compared to illuminant D55. However, it is important to 
note that in this case the solid-state light source is actually 
synthesizing the spectra of the source/color patch combinations, 
thereby replacing the physical color chart entirely. 

DSC Calibration Results 
Perhaps the most important performance criterion for the 

solid-state light source is its ability to enable accurate calibration 
of a DSC’s white-balance gains and color-correction matrix so that 
the DSC performs correctly when used under the intended 
illumination conditions. A set of spectral sensitivities for a typical 
KODAK Blue Plus Color Image Sensor, combined with a dichroic 
infrared (IR) filter, were chosen to serve as the basis for this 
evaluation, as shown in Fig. 4. A set of Guassian spectral 
sensitivities is also shown and will be discussed later. 

A set of RGB values for each of the 24 MCC color patches 
were computed by concatenating the SPD of the selected source 
with the SRD of each color patch and the spectral sensitivities of 
the imager, and then the results were summed for each wavelength 
within each color channel. The spectral sensitivities were first 
normalized to produce equal RGB values for the SPD alone, 
equivalent to white-balancing the camera. This process was 
repeated for each of the sources, including illuminant D55. For the 
solid-state light source, the resulting synthesized spectra for each 
SPD/SRD combination were concatenated with the sensitivities of 
the imager to compute the RGB values. In this case, the spectral 
sensitivities were normalized to produce equal RGB values for the 
synthesized D55 illuminant alone (see Fig. 2). 
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Figure 4. Comparison of CCD (solid) and Guassian (dotted) spectral sensitivities (all 
normalized to unit area). 

 
Color-correction matrices were computed for each case using 

a process described in U.S. patent 5,668,596, with chromatic 
adaptation applied and error minimization performed in the 
CIELAB color space. The average and maximum CIELAB ∆E* 
values were computed for each case and are summarized in Table 
3. The white-balance errors, expressed as a red/green or blue/green 
ratio, were also computed and are summarized in Table 3. These 
errors represent the result of calibrating the DSC with the indicated 
source and then using it under actual D55. 

 
Table 3. Colorimetric Performance of Light Sources with the 
KODAK Blue Plus Color Image Sensor 

 

Source 
R/G 

Error 
(%) 

B/G 
Error 
(%) 

∆E*ave ∆E*max 

D55 0.00 0.00 3.33 10.95 

LED -0.14 0.52 3.21 10.11 

HMI 7.17 0.20 3.72 12.00 

Solax 4.20 13.26 3.78 13.33 

Kinoflo 3.03 16.94 4.13 15.76 

 
The results in Table 3 show that a DSC that is calibrated using 

the solid-state light source will exhibit small white-balance errors 
when used under actual D55. The other sources will cause much 
larger white-balance errors to be present. It is interesting to note 



that there is not much difference in the average color error when 
any of the sources are used for colorimetric calibration. This is a 
result mainly of the quality of the spectral sensitivities of the 
imager itself. 

To test this hypothesis, a set of RGB spectral sensitivities 
were computed that were close to color-matching functions 
(CMFs). A particular set of spectral sensitivities is defined to be a 
set of CMFs if there exists a 3 × 3 linear transformation that relates 
them to the spectral sensitivities of the human visual system. The 
colorimetric quality factor (CQF) metric, proposed by Neugebauer, 
was used to guide the derivation of this set of spectral sensitivities 
[7]. Spectral sensitivities that are CMFs will have a CQF value of 
unity, and those that depart from CMFs will have a CQF value of 
less than unity. A Guassian curve shape was chosen because it is 
easy to generate mathematically and the actual spectral sensitivities 
(see Fig. 4) were computed using Eq. (4) based on the parameters 
summarized in Table 4. The CQF value for each of the actual CCD 
imager channels is also included for comparison. 
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Table 4.  Parameters for Guassian Sensitivities 

Channel λPK 
(nm) 

b 
(nm) CQF* CQF** 

Red 593 84 0.997 0.715 

Grn 546 82 0.998 0.996 

Blu 451 53 0.993 0.827 

 * Guassian, ** CCD 

 
The DSC evaluation process described in conjunction with 

Table 3 was repeated for the DSC having Guassian spectral 
sensitivities with the results summarized in Table 5. 

 
Table 5. Colorimetric Performance of Light Sources with Imager 
Having Guassian Sensitivities 

Source 
R/G 

Error 
(%) 

B/G 
Error 
(%) 

∆E*ave ∆E*max 

D55 0.00 0.00 0.29 0.88 

LED −1.21 0.58 0.35 1.04 

HMI 9.56 6.18 0.83 2.85 

Solax 2.79 21.83 1.77 4.57 

Kinoflo −1.86 29.69 3.04 8.57 

 
Note that there is still a small residual average color error 

when the DSC is calibrated using illuminant D55, and then used 
under the same illuminant. This result is not unexpected because 
the Guassian sensitivities are not exactly CMFs. The average color 

error is only slightly worse for the solid-state light source, 
however, the HMI, Solax, and Kinoflo sources exhibit 
progressively larger average color errors. The white balance errors 
are again small when the solid-state light source is used, however, 
much larger errors are evident for the other three light sources. 

Summary 
The solid-state light source has been shown to outperform 

several other commonly used light sources in every test category. 
These results were not readily apparent at the onset of the 
development program and are actually quite surprising considering 
that only 12 unique LED spectra were used. Others have 
demonstrated that this performance can be improved further using 
LEDs with more unique spectra [1,2]. 

Direct synthesis of visible band spectra has enabled the 
replacement of physical color targets and their requisite lighting 
for DSC colorimetric calibration. The small size and relatively low 
cost of the solid-state light source, in addition to its accuracy, 
reliability, and stability, have made it economically feasible to 
introduce individual colorimetric calibration even into cost-
sensitive DSC production environments. 
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